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Abstract
Election fraud detection is paramount for upholding the integrity of democratic

processes. Traditional approaches to election forensics research involve thorough
examination of electoral procedures and extensive statistical analysis of voting data.
Statistical analyses utilize various techniques, such as digit tests, trend analyses, and
statistical modeling, to detect anomalies in voting patterns and uncover suspicious
trends in voter turnout or vote shares. This study aims to apply supervised machine
learning algorithms to predict election fraud reported by observers using various
election forensics measures based on data from the 2018 Russian presidential elec-
tions.

Data

The dataset contains a small sample of election fraud data from Russian
presidential election 2018 collected by the activists of the “For Fair Elec-
tions” movement(2). The independent observers were able to download
footage from 8,000 polling stations out of 46,000 polling stations with in-
stalled webcams. While watching a video recording from selected precinct,
volunteers recorded their answers to 11 questions describing the execution
of procedures required by the law. A total of 271 reports/observations are
available to the author.

Target variable: Precinct-level magnitude of election fraud related to
turnout, as measured by election observers.

Precinct-level features:
• electoral: turnout, incumbent’s vote share;

• geographic: republics/territories, urban/rural;

• election forensics:

– precinct-level digit tests: last digits and second digits in vote counts
and turnout, 0s and 5s in turnout and incumbent’s vote percentages
(Valid last, Votes last, Valid last05, Votes last05,
Valid second, Votes second);

– precinct-level nonparametric measures: Nonp Shpilkin raw,
Nonp EM pre raw, Nonp EM hist raw, clean.votes.M2,
fraud.votes.M2, clean.votes.M5, fraud.votes.M5
based on Kalinin’s computations (3);

– precinct-level parametric measures, the Bayesian finite mixture model:
tfraud, Ntfraud, pfraud, Nfraud based on Mebane’s compu-
tations (5).

Supervised Learning Algorithms

In this study I will focus on five supervised machine learning algorithms:
Decision Trees, Neural Networks, Boosted Trees, Support Vector Machines,
and k-Nearest Neighbors.

ML Challenges

Conducting machine learning experiments in election forensics research
poses significant challenges.

• The complexity of factors involved in election fraud and the limited size
of the dataset present obstacles to model development.

• Imbalanced classification poses a challenge, as the minority class (elec-
tion fraud) has too few examples for the model to accurately learn the
decision boundary.

• Overfitting issues arise due to the limited number of election observation
cases.

Pre-Processing and Performance Evaluation
All the features are normalized using the preprocessing.normalize function
from the scikit-learn library. The normalized features are then converted to
a NumPy array. Subsequently, the datasets were divided into training and
testing samples, with 80% allocated for training and 20% for testing.

Each classifier utilized in this study undergoes evaluation using the Strat-
ified K-Fold cross-validation that allows to systematically and reliably as-
sess the performance across varying training sample sizes. The function
iterates over a range of training sample sizes. For each iteration, it con-
ducts Stratified K-Fold cross-validation with 5 folds. This approach ensures
that each fold maintains the same class distribution as the original dataset.
However, the imbalanced nature of the dataset can lead to overfitting is-
sues. To mitigate this, Random Over-Sampling of the training set can be
also employed to address class imbalance.

The learning curve uses F1 Macro Score calculated by taking the average
of the F1 scores for each class in a multi-class classification problem. The
macro average gives equal weight to each class, regardless of class imbal-
ance. The F1 Macro Score is computed based on the model’s predictions
on a separate test set or validation set, therefore it demonstrates how well
the model generalizes to unseen data.

In addition, each classifier is analyzed with a validation curve, a standard
tool in machine learning model assessment. The plotting function leverages
parameters denoting training scores, validation scores, and corresponding
indices to graphically represent the performance of machine learning mod-
els across varying parameter values. This visualization facilitates the de-
tection of potential overfitting or underfitting issues in the classifiers.

After conducting manual performance evaluation, I apply the Grid-
SearchCV algorithm, which conducts cross-validation on the training data
using various combinations of hyperparameters specified in the grid. It
evaluates the performance of each combination using the specified scor-
ing metric (F1 weighted in my case). After evaluating all combinations
during cross-validation, GridSearchCV selects the model with the highest
average score as the best estimator. This proposed model with the optimal
hyperparameters is then run separately. Based on it, I test and evaluate the
performance of each algorithm for each class and assess how quickly they
perform in terms of wall clock time.

Analysis

Decision Trees
Decision Trees are a versatile supervised learning algorithm that create a
model based on a series of binary decisions, representing data features as
nodes and outcomes as leaves. The Figure suggests that effective learning
requires a minimum of 200 samples, though improvements in the valida-
tion set may decrease training set performance. GridSearch recommended
cost complexity parameter (ccp alpha = 0.064) and the entropy criterion
for optimal decision tree performance.

Neural Networks
Neural Networks consist of interconnected nodes or neurons arranged in
layers that process input data through weighted connections, enabling
them to learn complex patterns and relationships. For Neural Net-
works, GridSearch identified the optimal parameters as alpha = 0.001,

hidden layer sizes = (10, 20), and learning rate init = 0.01, achieving
a best cross-validation score of 0.70.

Boosting
Boosted Trees improve the performance of decision trees by sequen-
tially training models, each correcting the errors of its predecessor. For
the Boosting classifier, I utilized the GradientBoostingClassifier from the
sklearn library. The GradientBoostingClassifier generally demonstrates
improved performance in mitigating overfitting compared to the AdaBoost-
Classifier. It constructs trees sequentially, with each new tree rectifying
errors from previously trained ones, whereas AdaBoost assigns weights to
data points and concentrates on misclassified points in subsequent itera-
tions. GridSearch revealed that the best model, with a validation score of
0.818, was obtained with α = 0.01 and n estimators = 140.

Support Vector Machines
Support Vector Machines are powerful classifiers that find the optimal hy-
perplane that separates data into distinct classes with the maximum mar-
gin, making them effective in high-dimensional spaces and for handling
non-linearly separable data using kernel functions. Using GridSearch to
optimize the Support Vector Machine model, the best performance was
achieved with a linear kernel, C = 50, degree = 1, and gamma = 0.005,
resulting in a validation score of 0.68. This indicates a moderate perfor-
mance on the validation set, suggesting room for further optimization or
alternative approaches.

k-Nearest Neighbors
k-Nearest Neighbors is a simple, instance-based learning algorithm that
classifies data points based on the majority class among their k clos-
est neighbors in the feature space. GridSearch determined that the opti-
mal parameters for the k-Nearest Neighbors algorithm were the euclidean
metric and n neighbors = 18, achieving a validation score of 0.65.

Comparison of Learners

F1-score
The F1-score is a metric commonly used in classification tasks that pro-
vides a balance between precision and recall. Intuitively, it can be un-

derstood as a measure of a model’s accuracy in correctly identifying both
positive and negative instances in a dataset.

Table 1 presents F1-scores for different machine learning classifiers
across three fraud categories: High, Low, and Medium.

Table 1. F1-scores
DT NN BG KNN SVM

High 0.711 0.850 0.789 0.765 0.811
Low 0.723 0.711 0.723 0.744 0.756
Medium 0.333 0.400 0.480 0.485 0.500

acc. 0.655 0.691 0.691 0.673 0.709
mac.avg 0.589 0.654 0.664 0.665 0.689
w.avg 0.627 0.683 0.687 0.690 0.713

It shows accuracy, macro-average, and weighted-average scores for Deci-
sion Tree, Neural Network, Boosting Gradient, SVM, and KNN classifiers.
The highest F1-score across all metrics and classifiers is achieved by the
SVM model, indicating its superior performance on the dataset.

Wall Clock Time
This measure is crucial for evaluating algorithms as it directly reflects the
computational resources required for training and inference, impacting the
efficiency and scalability of the model.

Table 2. Wall Clock Time (in seconds)
Model Time

Decision Tree 0.01
Neural Network 0.34
Boosting Gradient 0.13
SVM 0.01
KNN 0.01

Table presents the wall clock time (in seconds) for various models. The
Decision Tree, SVM and KNN models exhibit consistently low training
times. However, the Neural Network and Boosting Gradient models re-
quire significantly more time, with the Boosting Gradient model being par-
ticularly time-consuming.

Conclusion
The development of ML models capable of accurately predicting election
fraud can enhance the efficiency and effectiveness of election monitoring
efforts. This study provided a comparison of five supervised machine learn-
ing algorithms: Decision Trees, Neural Networks, Boosted Trees, Support
Vector Machines, and k-Nearest Neighbors, with Support Vector Machines
providing the best performance on our data.

Further Research
I plan to further this study by including more precinct-level data and focus-
ing on the data from Karta Narushenii website for all monitored elections
since 2011 (4). Since imbalanced classification is a significant issue for
this analysis, I intend to utilize class-balanced loss, which assigns sample
weight inversely proportional to the class frequency (1).

The paper version of this poster can be accessed online.
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