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Abstract

The primary objective of this study is to leverage the capabilities of a large language model
(LLM), such as GPT-3, to generate responses from elite individuals who are difficult to ac-
cess. Similar to the work of Argyle et al. (2023), this study specifically focuses on the domain
of multiple-choice questions. To address the issue of instability and hallucinations commonly
associated with LLM, a novel algorithm, termed the “sampling-permutation algorithm”, has
been developed and implemented. The efficacy of this algorithm is assessed by applying it
to questions from the Survey of Russian Elites(Zimmerman, Rivera and Kalinin 2022). No-
tably, this study examines the generated responses from synthetic personas representing the
Russian President Vladimir Putin and the opposition leader Alexei Navalny by conducting
a validation study and exploring the effects of the war context on generated responses. My
findings indicate that the proposed approach provides valuable insights, despite the presence
of somewhat mixed results.
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Introduction

This study introduces a novel “sampling-permutation algorithm” for generating multiple-

choice responses from the language model GPT-3 (Brown et al. 2020). The algorithm ex-

hibits promising potential for application in academic research and policy analysis, offering

a solution to address the challenges associated with instability and hallucinations that are

often encountered in large language models (LLMs).

The algorithm is put to the test in generating responses from hard-to-reach members of

the Russian elite, covering a wide range of topics including politics, economics, and culture.

The proposed framework builds upon the work of Argyle et al. (2023) and leverages con-

ditional probabilities of tokens in data simulation to ensure more reliable and contextually

appropriate responses.

We anticipate the following criteria to be met when generating survey responses using

the LLM:

a) The generated responses should demonstrate robustness when faced with semanti-

cally similar questions. In other words, the algorithm should be able to provide consistent

and coherent answers even when the questions are expressed differently but have the same

underlying meaning.

b) The responses should not be influenced by the different orderings of response options.

Regardless of the arrangement of the choices, the system should provide consistent answers

that are not affected by the positioning or presentation of the options.

c) To ensure the quality and reliability of the generated responses, it is essential to

validate them using external data sources or other LLMs that have been trained or fine-

tuned on different datasets. This external validation provides an additional measure of

confidence in the accuracy and relevance of the generated data.

Guided by the specified criteria, this research presents three distinct code implementa-

tions: a) single-factor data generation for closed-ended questions, which entails the creation

of a set of prompts and a full set of permuted multiple-choice responses for each question;
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b) multi-factor data generation for closed-ended questions utilizing multi-factor crosstabs to

build prompts for subgroups based on multiple socio-demographic factors; and c) data gen-

eration for open-ended questions that resembles single-factor data generation but is adapted

to the format of open-ended questions.

The incorporation of multiple code implementations enables a comprehensive exploration

of various data generation scenarios and enhances the research’s ability to meet the stipulated

criteria. By focusing on both closed-ended and open-ended questions, this research seeks

to provide a well-rounded analysis of the language model’s performance and reliability in

generating responses across different contexts and question formats.

The empirical part of this paper primarily concentrates on the single-factor generation of

data for closed-ended questions. Specifically, it focuses on data generation of responses for

“Vladimir Putin” and “Alexei Navalny”, as well as state and non-state elite members. By

adopting this approach, the study aims to ensure consistency and coherence in the gener-

ated responses for different synthetic politicians and elite groups. Discussion of other listed

approaches can be found in the Appendix.

To generate responses for closed-ended questions, the text-davinci-003 model is utilized

as the core tool for data generation. As a component of the validation process, I incorporated

questions from a questionnaire in conjunction with data from the “Survey of Russian Elites”

(Zimmerman, Rivera and Kalinin 2022). This study also emphasizes an analysis of contextual

effects aimed at simulating diverse responses from synthetic politicians, contingent upon the

war context surrounding the Russian-Ukrainian conflict.

The paper is structured as follows: Section 1 provides an overview of the GPT-3 language

model and proposed sampling-permutation algorithm. Section 2 delves into the empirical

strategy employed for generating responses using a single-factor generation approach. Fi-

nally, Section 3 presents main findings of the validation and context-effects analysis. The

concluding section summarizes the main findings of this research.
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Theory

Overview of the GPT-3 model

The GPT-3, or “generative pre-trained transformer”, is an advanced language model de-

veloped by OpenAI that boasts 175 billion parameters and has been trained on a vast and

diverse corpus of texts totaling 570 gigabytes. The GPT-3 is a standard autoregressive

decoder-only language model which given a prompt x1:i produces both contextual embed-

dings and a distribution over next tokens xi+1, such that x1:i ⇒ ϕ(x1:i), p(xi+1 | x1:i) (Liang

et al. 2022). Simply speaking, instead of looking for the perfect solution each time, the model

tries to find the best probabilistic match in the data set on which it has been trained.

In recent literature, there have been attempts to assess the performance of GPT-3 in

various domains. One study by Argyle et al. (2023) proposes the use of GPT-3 as proxies for

specific human subpopulations in social science research. The authors condition the model

on thousands of sociodemographic backstories from real human participants in multiple large

surveys conducted in the United States and demonstrate that GPT-3 can closely replicate

human responses. In another paper, Kalinin (2023a) utilizes GPT-3 generated responses for

geopolitical forecasting related to the Russia-Ukraine war. Furthermore, Bommarito and

Katz (2022) evaluate the performance of GPT-3 on the NCBE MBE practice exam through

an experimental study. Other examples of the application of GPT-3 can be found in OpenAI

(2023)’s report. These studies highlight the potential of GPT-3 in various domains and its

ability to generate responses that are comparable to those of humans.

Recent work shows that large language models can perform few-shot learning without

fine-tuning (Radford et al. 2019), suggesting “in-context” learning can be effectively used

without additional fine-tuning parameter updates. And, more importantly, it has numerous

practical advantages over the fine-tuning (Radford et al. 2019; Devlin et al. 2019) by allowing

to “rapidly prototype” NLP models, simplifying access to users without technical expertise,

and reusing the same model for each task. The earlier work by Manakul, Liusie and Gales
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(2023), shows that depending on the prompt’s format and training examples the accuracy

can change from near chance to near state-of-the-art. This instability implies that GPT-3

users, who typically design prompts manually, cannot expect to consistently obtain good

accuracy.

This study operates under certain set of assumptions that GPT-3-generated responses

must satisfy. The study assumes that GPT-3 has knowledge of potential responses from

certain members or subgroups of the elite, resulting in sampled responses that are likely to

be similar and contain consistent information. Second, the quality of the generated output

depends on the quality of training data: non-relevant data might produce biased generated

responses. Third, the model’s generation of the most probable responses makes predicting

strategic behavior in responses to survey questions quite a challenging task.

When provided a zero-shot prompt for multiple-choice questions GPT-3 can learn to gen-

erate letter choice responses to multiple choice questions by identifying the type of question

and its semantic meaning. However, due to its autoregressive nature, GPT-3 primarily fo-

cuses on the left context when generating predictions. Consequently, information extraction

from the model can exhibit instability and may heavily rely on factors such as the format of

the prompt and the order in which multiple choice options are presented. This characteristic

introduces a potential challenge in ensuring consistent and reliable outputs from the model.

Another issue that can arise is LLM hallucination, which occurs when the generated output

is nonsensical and does not align with the given information (Ji et al. 2023). LLM hallu-

cination can complicate information retrieval using multiple-choice questions. Researchers

and practitioners should be aware of these issues when utilizing GPT-3 for tasks involving

accurate information retrieval, and by carefully considering prompt design it is possible to

mitigate the impact of this limitation and improve the overall model’s performance.

The proposed sampling-permutation algorithm effectively mitigates the problem of in-

stability and hallucinations encountered during the data-generating process by identifying

such occurrences as abnormal outliers. This approach not only ensures more reliable and
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accurate results but also provides measures of uncertainty that contribute to a deeper under-

standing of the level of entropy associated with the data-generating process for closed-ended

questions. By acknowledging and accounting for these phenomena as outliers, the algorithm

enhances the reliability and accuracy of the generated responses, thereby contributing to the

overall integrity of the findings.

The GPT-3 model outputs a log probability for every known token for both prompts and

completions. The reason for this is that it is computationally easier to compute the probabil-

ity of a sequence of tokens if individual probabilities are expressed in log probabilities rather

than in probabilities or percentages. Therefore to convert log probabilities to probabilities,

we use use the following formula: prob(x) = 100 × elogprob(x). These probabilities prob(x)

can be manipulated using two important parameters that control the randomness of gener-

ated response: temperature and Top P (OpenAI 2022). Temperature and Top P, sometimes

called the “creativity dials”, because these parameters control the amount of creativity in

response generation. Temperature takes a value between 0 and 1: at 0, randomness is re-

moved by boosting the most likely token to 100%. Top P ranges from 0 to 1 and controls

how many random results the model should consider for completion; it determines the scope

of randomness defined by temperature dial.

Other important parameters used for GPT-3 text generation are as follows: engine is set

to text-davinci-003 (one of the most powerful and expensive GPT-3’s execution engines),

max tokens is set to 1 (the maximum number of tokens to generate in the completion is 1,

since we only need one letter choice as the answer to a particular question); logprobs is set

to 10 (the list of log probabilities for 10 most likely tokens). Finally, both presence penalty

and frequency penalty are used to penalize new tokens based on their existing frequency in

the text by increasing or decreasing the model’s likelihood to generate text about new topics

or the model’s likelihood to repeat the same line verbatim (both parameters are set to their

default value 0).
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Sampling-Permutation Algorithm for Survey Data Generation

The main premise of this research is centered around the possibility of accurately recovering

a true quantity, denoted as θ, through the utilization of prompt sampling and permutations

for closed-ended questions in surveys. The objective is to achieve convergence towards the

true value by combining these methods in the LLM setting. In this context, let X̄ represent

the sample mean, θ denote the ground truth, ϵ represent a small positive number indicating

the desired level of accuracy, and θ̂ symbolize the estimated value of θ derived from the

sample mean. The aim is to establish a scenario where according to LLN the probability

tends to zero as the sample size approaches infinity, denoted as limn→∞ P (|X̄ − θ| > ϵ) = 0.

The sampling-permutation algorithm, which has been adapted for utilization in large

language models for the purpose of information extraction, can be outlined as follows.

Let Q0 = p⌢0 O0 represent the original multiple-choice question, consisting of two con-

catenated parts: p0 – the original prompt containing the stem (question or problem), and

O0 – a set of multiple-choice options {o1, o2, ..., on}. Using p0 as an original user query, we

can generate a set of semantically identical LLM responses, denoted as P = {p1, p2, ..., pl}.

The LLM’s “creativity dials”, such as temperature (t = 0.8) and top P (tp = 1), are adjusted

to produce variations of prompts. Next, given the original set O0, we obtain a set of new

permuted sets, such as O = {O1, O2, ..., On!}. To generate a set of questions G with per-

muted options, we concatenate the sets P and O, resulting in set G of size l · n! with P⌢O

questions.

During the computing stage, each question g from a set G is inputted into the genera-

tive LLM using OpenAI’s completion endpoint. As a result, the LLM generates a single-

letter response (represented as a one-letter token) with the highest probability (measured

on a logarithmic scale), denoted as t̂ = argmaxg∈G LLM(g). Consequently, for a set of

generated questions G = {g1, g2, ..., gn}, I obtain a set of most probable letter responses

L = {l1, l2, ..., ln} and a corresponding set of token probabilities for each letter response

T = {t̂1, t̂2, ..., t̂n}. Based on these token probabilities, two quantities of interest are com-
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puted. First, I calculate the mean token probability for each winning option category, de-

noted as c: T̄l=c =
∑nl=c

i=1 t̂l=c

Nl=c
. By calculating the average score T̄c for each letter response, we

can effectively estimate the true probability of support for each option with reduced noise.

Second, the uncertainty estimate, standard deviation σ of option-wise token probabilities, is

calculated: σl=c =
√∑

(t̂l=c−T̄l=c)2

Nl=c
. Here, Nl=c denotes the total count of occurrences where

the letter response l matches the category c.

The average probability of a token, denoted as T̄c, can be interpreted as the average text-

based generated support for a specific option. This interpretation allows for a meaningful

comparison with the survey proportions, facilitating further analysis and evaluation of the

findings.

The proposed algorithm, which utilizes token probabilities for estimation, can be ex-

tended to incorporate quantities generated directly by the LLM(Lin, Hilton and Evans 2022).

This enhancement allows for a broader application of the algorithm beyond token probabil-

ities.

Hence, for each multiple-choice question the algorithm produces two quantities of interest:

the average probability of the letter response across all generated prompts and permuted

options and the standard deviation of the probability of the letter response.

The permutation algorithm employed in this study entails submitting a query to Ope-

nAI’s API for each permuted question. Consequently, the computational cost increases

exponentially as the number of multiple choice questions expands. For instance, a ques-

tion with 2 options results in 2 question-permutations, while 3 options yield 6 question-

permutations. This pattern continues with 4 options leading to 24 question-permutations, 5

options resulting in 120 question-permutations, 6 options giving 720 question-permutations,

7 options involving 5040 question-permutations, and 8 options accumulating a staggering

40,320 question-permutations. Hence, we should be mindful of the associated costs and

ideally restrict the number of options to a maximum of 3-4.
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Empirical Strategy

Data, Prompts, Hypotheses

In this paper I will use the questions from the Survey of Russian Elites, which covers the

period 1993–2020 (Zimmerman, Rivera and Kalinin 2022). The Survey includes members of

the Moscow elites working in the major public and private sectors of Russian society. Specif-

ically, the interviews were conducted with high-ranking individuals employed in the media,

state-owned enterprises, private businesses, academic institutions with strong international

connections, as well as the executive branch, the federal legislature, the armed forces and

security agencies.

The data include a wide range of questions related to Russia’s national interests, U.S.-

Russian relations, the role of military force in international relations, the greatest threats

to stability and security, Russia’s relations with other countries (e.g., the United States,

Ukraine, Belarus, Japan and China), the enlargement of the European Union, NATO ex-

pansion, Russia’s civilizational path and many other questions related to the international

and domestic agenda.

For the purpose of illustrating the functionality of the single-factor data generation algo-

rithm in this particular version of the paper, I selected 129 questions from the 2020 Survey.

These questions were chosen based on their relevance to the analysis and were subsequently

modified to improve clarity and simplicity. Furthermore, placeholders were included in each

question to allow for the automated insertion of specific time periods, names, or concepts.

In this study I am mostly interested in generation of responses from two synthetic politi-

cians: Russian President “Vladimir Putin” and Russian opposition leader “Alexei Navalny”.

As part of the validation process, I utilized data from the “Survey of Russian Elites” (Zim-

merman, Rivera and Kalinin 2022) and compared it with the generated responses attributed

to state and non-state elite members. The Davinci (text-davinci-003 ) model is the central

model used for generating responses to closed-ended questions.
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The division of elites into two separate categories is based on the rationale developed by

Noah Buckley and Joshua Tucker. The aim is to identify members of elites whose views can be

closest to either “Vladimir Putin’s” or “Alexei Navalny’s”. Those members of elites working

in the executive or legislative branches, the military, or security agencies are classified as

“core” or “government” elites, whereas those employed in the media, science and education

fields, state-owned enterprises, or private business are “non-core” or non-government elites

(Buckley and Tucker 2019). This categorization is intended to partially validate responses

generated for Vladimir Putin and Alexei Navalny, with the former’s position closely related

to that of the government elites and the latter’s position closely related to that of the non-

government elites.

Consequently, my validation hypothesis posits that Vladimir Putin’s responses are

anticipated to align more closely with state elites, while Alexei Navalny’s responses are

expected to resonate more closely with non-state elites.

Recall that the probability percentages of responses generated by the Davinci model are

intended to represent the probabilities of multiple choices across different permutations, so

they are not normalized and do not add up to one. The resulting standard deviations of

the probabilities for all permutations are used to construct 95% confidence intervals where

possible.

The questions for “Vladimir Putin”/state elites and “Alexei Navalny”/nonstate elites

are preceded by additional contextual information. First, I generate responses for 2020,

which align with the data the Davinci model has been trained on, aiming to validate GPT-3

generated responses based on the collected Survey data. Second, I also generate data for 2022

responses that the model has not encountered before. This exercise serves to demonstrate the

model’s capabilities in extrapolating learned information onto the future, particularly within

the context of war. The goal is to explore how the GPT-3 model handles novel situations

and to assess its performance in unseen scenarios.

The context experiment is based on the concept of the “rally ’round the flag” effect first
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explored in U.S. foreign policy crises is explored in Mueller (1985) that refers to a phe-

nomenon observed in politics and international relations where public support for a coun-

try’s leader or government increases significantly during times of crisis or conflict. This effect

suggests that during periods of national threat, such as military conflicts or significant inter-

national challenges, people tend to set aside their political differences and unite behind their

leaders. This effect can bolster a leader’s approval ratings and fortify their authority, often

fostering a sentiment of national unity. In accordance with my war effect hypothesis, I

anticipate that in comparison to 2020, the alignment between “Putin” and state elites, and

to a lesser extent between “Putin” and non-state elites, will intensify in 2022. Conversely,

for “Navalny”, the association between state and non-state elites should tend to weaken.

From a technical standpoint, this war effect experiment for 2020 and 2022 serves the

purpose of evaluating GPT-3’s capabilities in gauging the context’s effects on responses

pertaining to “Putin” and “Navalny”. The study aims to glean insights into the variations

in GPT-3’s responses based on the context it encounters and how this context-based priming

might affect the two synthetic politicians across diverse policy domains. This part illuminates

the significance of comprehending and managing priming when utilizing AI language models

like GPT-3, as it underscores the potential to manipulate generated outputs based on the

provided context.

For example, for 2020 and 2022 the prompts are as follows:

In 2012 Placeholder︸ ︷︷ ︸
Person={V ladimirPutin,AlexeiNavalny}

thinks that

A.Option1;B.Option2;C.Option3.︸ ︷︷ ︸
Permutations:{ABC},{BAC},{CAB},{ACB},{ACB},{BCA},{CBA}

.

In 2022, Russia’s invasion of Ukraine intensified the Russo-Ukrainian War, causing mass

casualties and destruction. This led to international sanctions and Russia’s isolation. Do-

mestically, Russia prioritized a military economy and effectively quashed political opposition

to rally support for the war. In 2022 Placeholder︸ ︷︷ ︸
Person={V ladimirPutin,AlexeiNavalny}

thinks that

A.Option1;B.Option2;C.Option3.︸ ︷︷ ︸
Permutations:{ABC},{BAC},{CAB},{ACB},{ACB},{BCA},{CBA}

.
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Another important area of discussion is related to questions for which responses can

change during the times of crisis: we can expect that depending on the type of question

people specific segments of elites would feel different about different questions. For instance,

some authors acknowledge that during a crisis, the more fundamental the threatened values

are, the greater the perceived likelihood of war; second, the more dynamic, potent, and

fundamental the values under threat are, the longer the perceived time for response will

be; third, when time pressure becomes more acute, there is an elevated perception of the

likelihood of war and a heightened intensity in the perception of the threat (Brecher and

Wilkenfeld 1997). Consequently, according to my survey questions hypothesis, it is

reasonable to anticipate that survey questions concerning war, values, and perceived threats

will be the ones most significantly influenced by the war context.

The Python script that implements automated generation of responses using the GPT-3

model via single-factor data generation algorithm is available on GitHub. For simplification

purposes, one needs to fill out only the spreadsheet and run the Python code (see all details

in the Appendix).

The code was designed to utilize the LLM for generating a collection of three question

stems with identical semantic content. This process involves the original prompt along with

the three stems, resulting in a list of four stem variants. Subsequently, for each variant of a

question stem, the algorithm facilitates the generation of a complete set of permuted options,

which are then combined with the list of stems. The full list of concatenated sampled stems

and permuted options is used in API queries. Per each API query an algorithm extracts

the option with the highest probability and calculates option-wise statistics, such as the

mean and standard deviation. The rationale behind focusing solely on the most probable

choices is to ensure that the resulting tokens are sensible, given that the options with lower

probabilities could be nonsensical. Moreover, certain options may never be chosen by the

model and thus are disregarded in the output.

A single API query provides normalized probabilities for generated responses for each
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permutation, which sum up to one. However, option-wise aggregate estimates for all permu-

tations do not sum up to one, and thus normalization of the resulting quantities of interest

is necessary to ensure consistency. Presently, the script does not implement such normaliza-

tion. Although computing permutations of questions can be computationally expensive, an

increase in the number of permutations can increase confidence in the results and help assess

the amount of relevant information in the LLM. Conversely, when the number of options

and permutations is limited to two, we may have less confidence in the generated results.

Findings

Using the single-factor approach, I implemented the generation of responses from synthetic

politicians for the Russian President, Vladimir Putin, and the Russian opposition leader,

Alexei Navalny, as well as state and non-state elites for both 2020 (i.e., when the last survey

wave was collected) and 2022 when the Russia-Ukraine war occurred. The generated data

results are available on GitHub: the results for each question contain the mean estimate of

token probabilities and confidence intervals for the chosen options.

Validation Experiment

The strength of association, as measured by Cramer’s V, between the survey and gener-

ated letter responses is indicative of complex patterns. Each subfigure in Figure 1 contains

associations for six categories: GPT-3 Putin, GPT-3 Navalny, GPT-3 state elites, GPT-3

non-state elites, as well as Survey state elites, and Survey non-state elites. The first four

categories represent GPT-3-generated results, while the last two categories draw information

from the Survey of Russian Elites, 2020 (Zimmerman, Rivera and Kalinin 2022).

In 2020, the Cramer’s V values indicate a moderate level of association between GPT-3-

generated responses attributed to “Putin” and GPT-3-generated responses concerning both

types of elites. However, upon comparing the GPT-3-generated responses for “Putin” with
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Figure 1: Cramer’s V
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Notes: Figures (a) Cramer’s V for responses generated for 2020 and (b) Cramer’s V for responses
generated for 2022. Cramer’s V is a measure of association used to quantify the strength of the
relationship between two categorical variables. It ranges from 0 to 1, where 0 indicates no association
between the variables, and 1 indicates a perfect association.

the survey results for both types of elites, the associations become notably weaker, fail-

ing to offer compelling evidence in support of the validation hypothesis. Furthermore, for

“Navalny”, these associations are found to be even less substantial compared to those for

“Putin”.

In comparison to the year 2020, the Cramer’s V associations in 2022 have displayed an

increase in GPT-3 generated results, leading to a transition from weak values to moderate or

strong values. This observation is not limited solely to Putin, but also encompasses Navalny

and their respective associated elites. This finding demonstrates that the context of war

prompts the LLM to generate responses characterized by increased mobilization tendencies

and more distinct alignment patterns between leadership and the corresponding elite factions.

Lastly, concerning the validation study, the associations between the generated responses

and the 2020 Survey results consistently exhibit weak findings, with a marginal decrease
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in associations observed for “Putin” and an increase for “Navalny” in 2022 as compared

to 2020. This implies that the LLM continues to face a significant challenge in accurately

capturing the nuanced intricacies of the survey data. This difficulty is further accentuated

by the absence of negative associations between responses from ’synthetic’ politicians.

In sum, even though the Cramer’s V analysis for both 2020 and 2022 suggests limited

support for the validation of GPT-3-generated data, the increase in associations in the 2022

matrix highlight the model’s ability to adapt and generate contextually relevant responses.

Table 1 presents the Cramer’s V measures discussed earlier, along with accuracy mea-

surements and correlations among the groups of interest. The table highlights the complex

associations between the GPT-3 model’s generated responses for the synthetic politicians

and their respective associated groups. In the context of 2020, the accuracy measures span

a range of 0.30 to 0.60, while for 2022, they exhibit variability from 0.26 to 0.71. It’s note-

worthy that these observed accuracy measurements appear to align with the trends seen in

Cramer’s V.

Table 1: Validation Study

2020 2022
Variable ϕc a ρ ϕc a ρ
GPT3 Putin vs. GPT3 State elites 0.39 0.60 0.01 0.57 0.71 0.37
GPT3 Putin vs. GPT3 Non-state elites 0.37 0.57 0.23 0.51 0.66 0.46
GPT3 Putin vs. Survey State elites 0.23 0.32 -0.05 0.12 0.35 0.21
GPT3 Putin vs. Survey Non-state elites 0.13 0.30 -0.18 0.08 0.36 0.15
GPT3 Navalny vs. GPT3 State elites 0.30 0.50 0.20 0.41 0.61 0.12
GPT3 Navalny vs. GPT3 Non-state elites 0.24 0.49 0.13 0.45 0.64 0.32
GPT3 Navalny vs. Survey State elites 0.16 0.34 0.04 0.20 0.26 0.36
GPT3 Navalny vs. Survey Non-state elites 0.13 0.31 -0.03 0.17 0.27 0.24

Notes: ϕc – Cramer’s V, a – accuracy, ρ – Pearson correlation.

In contrast to Cramer’s V and accuracy metrics reliant on letter-level responses, the

computation of Pearson correlations relies on token probabilities, thereby highlighting that

these probabilities, on the whole, provide a relatively inadequate representation of survey

percentages.

Unlike Cramer’s V and accuracy measures built on letter responses, the Pearson cor-
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relations are computed based on token probabilities, revealing that, on the whole, these

probabilities offer a relatively inadequate representation of survey percentages. For example,

in the year 2020, the correlation between GPT-3-generated responses attributed to “Putin”

and survey non-state elites exhibits a weak negative relationship, aligning with our initial

expectations. Contrary to our expectations, the correlation between responses attributed to

“Putin” and the attitudes of state elites from the survey shows a weak negative correlation;

similarly, the responses attributed to ’“Navalny” exhibit effects that contradict our initial

expectations.

In summary, our validation analysis reveals that the GPT-3 model demonstrates complex

associations between synthetic politicians and their associated groups. Both the Cramer’s

V and accuracy measures indicate better validation results in 2022 as compared to 2020.

However, upon contrasting GPT-3 measures with survey proportions, we encounter rather

mixed findings, indicating that synthetic data does not adequately capture the survey data.

Overall, the validation hypothesis receives only modest empirical support, shedding light

on the limitations of GPT-3-generated data concerning the Russian elites. Our war effect

hypothesis has been partially confirmed: in comparison to 2020, in 2022, we indeed observe

an increased alignment between “Putin” and state elites, and to a lesser extent between

“Putin” and non-state elites; conversely, for “Navalny”, the association between state and

non-state elites has weakened.

Analysis of Context/Priming Effects

Context manipulation within GPT-3 helps to assess its effect on relevant responses attributed

to synthetic politicians. This form of contextual priming holds the potential to yield valuable

novel insights and facilitate the projection of attitudes and perceptions across diverse sce-

narios. Figures 2 and 3 illustrate the effects of different prompts on the responses associated

with each synthetic politician.

According to Figure 2, there is a noticeable change compared to 2020, where an option
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Figure 2: Comparing Context Effects for “Vladimir Putin’
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suggesting that China is hostile toward Russia becomes plausible with a non-zero probability.

However, it is important to consider that the wide confidence interval for token probabilities

does not yield statistically significant results for the friendly and neutral choices (CHINAF).

Remarkably, in the war context, the question regarding Russia forming a coalition results in

the exclusion of other coalition options, leaving China as the only feasible choice (COALI-

TION). Additionally, the question about the US being friendly toward Russia during the

war period elicits a strictly negative response, indicating that “Vladimir Putin” perceives

the US as hostile toward Russia, in contrast to his more neutral position in the prewar

period (USF). Furthermore, both questions concerning NATO’s friendliness toward Russia

(NATOF) and the potential further expansion of NATO to countries in the Near Abroad

(NATOEXP) logically exhibit the same level of negativity towards NATO in the context of

war, or in some cases, an increase in negativity towards NATO.

Another question related to Russia’s reliance on oil reveals that, in comparison to the

pre-war period, during the war period “Putin’s” response would be that a decrease in the

price of oil in Russia represents a moderate and utmost danger (DANOIL). This observation

logically suggests that Russia becomes more dependent on oil revenues during war times. As

anticipated, the model generates an increase in military expenditures during the war, in con-

trast to the pre-war period (MILLEV). This shift in response aligns with the expectation that

countries often allocate more resources to their defense during times of war. Interestingly,

the model is indecisive about “Putin’s” response in the pre-war period regarding whether

Russia should follow the path of developed countries or adopt a unique Russian path. How-

ever, in the war setting, the model anticipates selecting only the latter as “Putin’s” most

feasible response (EUROPHIL). This suggests a strategic preference for a distinct Russian

path following the upheaval of war.

The question about the future distribution of power by “Putin” when he leaves the

presidency exhibits marked differences between the periods. In the war period, the model

excludes the option of free elections and instead considers the options of transferring all
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power to a trusted successor or associates as the most viable (LIKELYPUFUTURE). This

observation aligns with my earlier findings from the Predictioneer’s Game (Kalinin 2023b),

further supporting the model’s selection in the post-war context.

Other intriguing yet conceptually problematic findings suggest, for example, that the per-

missibility of employing the Russian military for the defense of territorial integrity exhibits

greater uncertainty during the war compared to the pre-war period (LFINTEG). This obser-

vation raises valid concerns about the model’s appropriateness in the war context. Further-

more, the most pivotal question concerning whether Russia and Ukraine should be completely

independent countries indicates that the model supports the notion that “Vladimir Putin”

would endorse both countries being entirely independent in both periods (RUS N UK). How-

ever, this generated result obviously contradicts current geopolitical developments.

In Figure 3, constructed for “Alexei Navalny”, substantial differences between both stud-

ied periods are not observed. This suggests that pronounced contextual effects, as observed

in the figure associated with “Vladimir Putin’s” responses, are largely absent. In most in-

stances, there is no significant cross-time variation, even though the confidence intervals and

estimates of token probabilities exhibit some changes over time.

These findings suggest that the model’s responses to prompts related to “Alexei Navalny”

remain relatively stable across the periods. However, it is essential to carefully examine the

questions and contextual factors to understand why certain variations are present while

others are not. Further analysis may shed light on the reasons behind these differences and

help elucidate the model’s behavior in generating responses for different synthetic politicians.

For instance, during the pre-war period, the results generated by the model for “Navalny”

indicate the importance of decreasing military expenditures (MILLEV). However, in the

war period, the picture becomes much more uncertain, with all options having non-zero

probabilities, signifying that the model cannot confidently extrapolate “Navalny’s” view on

this topic. Similarly, in the question concerning the future of eastern Ukraine, the model

predicted in 2020 that “Navalny” would favor the idea of eastern Ukraine remaining part of

18



Figure 3: Comparing Context Effects for “Alexei Navalny”
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Ukraine. However, in 2022, the model suggested a shift in “Navalny’s” stance, indicating that

eastern Ukraine should become part of the Russian Federation. These divergent responses

highlight the complexity of the model’s behavior when addressing certain issues and an

obvious lack of training data for making appropriate inferences.

In addition to the cross-time differences, examining disparities in the responses of the

two synthetic politicians sheds intriguing light on their their differing policy positions and

viewpoints. The most significant contrast between “Navalny” and “Putin” becomes evident

in their coalition partner preferences, where “Navalny” favors the European Union, while

“Putin” leans towards China. Moreover, the model demonstrates less decisiveness about

“Navalny’s” attitude towards the US during the war period, with responses fluctuating be-

tween being “neutral toward Russia” and “hostile toward Russia” (USF). This nuanced

stance stands in contrast to “Putin’s” more definitive position. Furthermore, the model re-

veals an open indecisiveness about “Navalny’s” response in the war period regarding whether

Russia should follow the path of developed countries or adopt its unique Russian path, which

diverges from “Putin’s” pro-Russian path stance. Additionally, unlike “Putin”, “Navalny”

favors the option that suggests Russia’s national interests should be limited to its current

territory (FPNATINT). Interestingly, according to the model, in times of war, “Navalny”

does not exclude the possibility of free and fair elections for power transition, while “Putin”

does.

These distinctions in the model’s responses for the two synthetic politicians offer valuable

insights into their simulated policy preferences and perceptions under varying contexts. It is

essential to interpret and contextualize these findings carefully to gain a deeper understand-

ing of the model’s behavior and its implications for different policy scenarios.

Heterogeneous Context Effects Across Question Clusters

The regression analysis enables us to investigate whether variations in context significantly

influence changes in token probabilities for all questions, as observed through point and
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interval estimates.

To conduct the regression analysis, I followed a series of steps. Initially, I generated

2048-dimensional text embeddings for each multiple-choice question using the GPT’s Bab-

bage model (text-similarity-babbage-001 ). Subsequently, I created a two-dimensional space

utilizing t-SNE (T-Distributed Stochastic Neighbouring Entities) for the purpose of visual-

ization. Then, I employed the k-means clustering algorithm to categorize the t-SNE data

points into predetermined clusters. This clustering approach helped to group semantically

similar questions together, relying on their text embeddings.

Figure 4: K-means Semantic Analysis
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Notes: (a) Cluster graph (b) Elbow plot.

In this study, the k-means clustering algorithm was applied to the entire dataset con-

sisting of 129 questions from the Survey. The primary objective was to identify underlying
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semantic patterns and associations within the subset of questions. Utilizing the elbow graph

method, eight clusters were determined to be the most appropriate representation for the

dataset. These clusters were subsequently labeled to signify their dominant thematic areas:

Cluster 0 related to the use of military in international politics, Cluster 1 represented social

values, Cluster 2 focused on the integration of the post-Soviet space, Cluster 3 dealt with

political behavior, Cluster 4 addressed sources of dangers, Cluster 5 pertained to domestic

issues, Cluster 6 explored aspects of the political system, and Cluster 7 examined individual

characteristics. The resulting 2-dimensional graph visually displayed the distribution of ele-

ments across these clusters, providing a comprehensive overview of the survey’s respondent

classifications. This analysis offers valuable implications for understanding the perspectives

of Russian elites on a wide range of topics and contributes to a deeper comprehension of

their underlying beliefs and attitudes.

I utilized the linear mixed-effects model (lmer)1 to conduct a nested regression analysis.

In this model, multiple-choice options are nested within each variable, which accounts for

the hierarchical structure of the data. The use of a nested lmer model is essential because

it allows for the consideration of individual variability within each level of nesting, provid-

ing a more accurate representation of the data’s inherent dependencies and improving the

reliability of the regression estimates.

Table 2 presents results for a series of nested models investigating the effects of context

changes on the mean and standard deviations of token probabilities associated with both

synthetic politicians. The variable Context represents the impact of the war context on token

probabilities. In Model M01, the coefficient of -5.59 for the Context variable indicates that,

on average, the war context leads to a statistically significant decrease of approximately

5.59 units in “Vladimir Putin’s” mean token probabilities. Similarly, in Model M05, the

coefficient of 0.92 suggests a slight increase in “Alexei Navalny’s” mean token probabilities

in the war context; however, the p-value for this coefficient is not statistically significant.

1formula: Estimate ∼ Context+ Cluster + (1|V ariable/Options)forlmer()inR.
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Table 2: Regression Analysis of Context Effects

M01 M02 M03 M04 M05 M06 M07 M08

(Intercept) 68.42 74.74 6.07 6.88 90.78 96.29 7.68 2.91
(2.24) (8.21) (0.44) (1.5) (0.7) (2.8) (0.48) (1.77)

Context -5.59 1.3 -0.35 3.15 0.92 -0.82 -1.78 -0.56
(2.06) (7.66) (0.47) (1.73) (0.82) (3.22) (0.54) (2.15)

Cluster 1 -5.61 1.81 -11.33 9.01
(10.02) (1.86) (3.28) (2.1)

Cluster 2 -12.58 -0.85 -7.84 7.75
(25.07) (4.76) (6.89) (4.62)

Cluster 3 3.61 -1.18 -4.47 -0.43
(14.41) (2.62) (4.31) (2.76)

Cluster 4 -7.5 -2.37 -1.78 4.06
(9.01) (1.66) (3.06) (1.95)

Cluster 5 -5.12 2.03 -5.78 7.14
(11.11) (2.07) (3.48) (2.25)

Cluster 6 -18.55 -1.5 -8.11 5.28
(9.53) (1.76) (3.15) (2.01)

Cluster 7 14.04 -0.82 -4.66 3.35
(10.81) (1.98) (3.5) (2.23)

Context × Cluster 1 -5.82 -4.13 5.07 -2.96
(9.36) (2.11) (3.86) (2.58)

Context × Cluster 2 15.97 -2.38 -11.27 1.57
(23.41) (5.29) (7.81) (5.24)

Context × Cluster 3 -3.69 -4.21 6.83 2.34
(13.46) (3.04) (4.88) (3.27)

Context × Cluster 4 -14.13 -4.04 -1.26 -1.49
(8.42) (1.9) (3.53) (2.36)

Context × Cluster 5 1.92 -0.94 -2.11 1.57
(10.38) (2.34) (4.09) (2.73)

Context × Cluster 6 -3.34 -3.89 3.45 -1.22
(8.9) (2.01) (3.7) (2.47)

Context × Cluster 7 -6.4 -4.49 6.02 -2.31
(10.1) (2.28) (4.08) (2.73)

Nested random effects model computed using lmer() in R. Models: M01, M02 – dependent variable
“Vladimir Putin’s” mean token probabilities; M03, M04 – dependent variable “Vladimir Putin’s” standard
deviations of token probabilities; M05, M06 -dependent variable “Alexei Navalny’s” mean token
probabilities; M07, M08 – dependent variable “Alexei Navalny’s” standard deviations of token
probabilities. Clusters: Cluster 0 : the use of military in international politics, Cluster 1 : social values,
Cluster 2 : integration of the post-Soviet space, Cluster 3 : political behavior, Cluster 4 : sources of dangers,
Cluster 5 : domestic issues, Cluster 6 : political system, Cluster 7 : individual characteristics.

For “Navalny”, however, the negative effect of context on standard deviation is statistically

significant, demonstrating an increase in the consistency of token probabilities.
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The models also incorporate “cluster” variables, representing the main and interactive

effects of different clusters of semantically similar questions on token probabilities. The

inclusion of these “cluster” variables allows us to explore how the effects of the war context

may vary across different clusters. For example, in Model M02 for “Vladimir Putin”, the

main effect of Cluster 6 (political system) on the token probability is negative compared

to Cluster 0 (the use of military in international politics), with a coefficient of -18.55. The

only statistically significant interactive effect is found in “Context × Cluster 4” (sources

of dangers), with a coefficient of -14.13. This indicates that the war context leads to a

decrease in the average token probabilities for point estimates related to this specific cluster.

According to Model M04, the decrease in the average standard deviations due to the war

context is associated with a range of clusters: Cluster 1 (social values), Cluster 4 (dangers),

Cluster 6 (political system), and Cluster 7 (individual characteristics). This finding suggests

that, for these types of questions, the generated token probabilities are characterized by less

variability and greater consistency in the war context.

For “Alexei Navalny”, in Model M06, all the main effects for Cluster 1 (social values),

Cluster 5 (domestic issues), and Cluster 6 (political system) are negative and statistically

significant when compared to Cluster 0. This suggests that, in the war context, token prob-

abilities associated with “Navalny’s” responses related to social values, domestic issues, and

the political system are consistently lower than those associated with other clusters. Regard-

ing standard deviations in Model M08, all the main effects of clusters demonstrate positive

values for several clusters (1, 2, 4, 5, 6), indicating that the model exhibits lower overall

confidence in the generated data for these specific clusters. This suggests that the token

probabilities for certain questions within these thematic clusters show greater variability,

reflecting the model’s uncertainty in providing consistent responses in the war context.

Overall, the findings from our analysis suggest that the war context exerts specific and

significant effects on the token probabilities associated with the responses of synthetic politi-

cians, with notable impacts on social values, domestic issues, and the political system, thus

24



partially confirming survey questions hypothesis – it appears that clusters related to war,

values, and perceived threats are the ones most significantly affected by the war context.

Hence, this section has offered valuable insights into the GPT-generated responses for

synthetic politicians within diverse contextual settings. The distinct effects observed across

different clusters emphasize the model’s sensitivity to thematic nuances and underscore the

substantial role of context in shaping its generated responses.

Conclusion

This study aimed to address potential issues related to the design of prompts and option

ordering effects by proposing a sampling-permutation algorithm. The main assumption of

this algorithm was centered around the possibility of accurately recovering a true quantity

through the utilization of prompt sampling and permutations for closed-ended survey ques-

tions. The objective was to achieve convergence towards the true value by combining these

methods in the LLM setting. The proposed sampling-permutation algorithm for data gen-

eration entailed that LLM was capable of generating probable responses that were robust to

semantically similar questions. By leveraging this approach, the resulting probabilities for

letter choices enabled the calculation of measures of uncertainty and facilitated the assess-

ment of variability in the generated responses for each specific question.

The paper demonstrated how the GPT-3 Davinci model could be used to generate re-

sponses from hard-to-reach members of the Russian elite in response to multiple-choice ques-

tions related to domestic and international politics. Within this study, three different code

implementations were proposed: a) single-factor generation of data for closed-ended ques-

tions; b) multi-factor data generation for closed-ended questions utilizing the multifactor

crosstabs; and, finally, c) data generation for open-ended questions. The code with examples

is available on GitHub.

In this study, using the single-factor generation of data for closed-ended questions, re-
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sponses were generated specifically for two synthetic politicians – President Vladimir Putin

and opposition leader Alexei Navalny. The model not only proved useful in identifying the

most likely synthetic responses and excluding the least likely ones but also enhanced the

reliability of the generated output.

Our validation analysis demonstrated that GPT-generated data yields complex associ-

ations between politicians and their associated groups. Specifically, both the Cramer’s V

and accuracy measures indicate enhanced precision in GPT-3-generated responses in 2022 as

compared to 2020. However, upon contrasting GPT-3 measures with survey proportions, we

encounter rather mixed findings, indicating that synthetic data does not always adequately

capture survey data – as a result, our validation hypothesis was only partially confirmed.

Furthermore, in comparison to 2020, in 2022, we indeed observe an alignment between

Putin and state elites, and to a lesser extent between Putin and non-state elites; conversely,

for Navalny, the association between state and non-state elites has weakened. Thus, our

findings partially confirmed our war effect hypothesis.

The contextual effects analysis demonstrated the effective utility of GPT-3 in simulating

various responses based on the given context. Through this analysis, significant differences

between the two synthetic politicians, “Vladimir Putin” and “Alexei Navalny”, emerged,

providing valuable insights into their hypothetical political positions and preferences within

distinct contextual scenarios. The study revealed that the war context exerted meaningful

effects on token probabilities associated with the responses of both synthetic politicians,

particularly with regards to social values, domestic issues, and the political system, thus

partially confirming the survey questions hypothesis. All these findings shed light on

how the model’s generated responses can potentially vary across different thematic clusters

under the influence of the war context.

Overall, the study expanded our understanding of how contextual variations affect LLM’s

responses for synthetic politicians and enriched the potential applications of LLMs like GPT-

3 in political analysis and survey research. The ability to simulate responses based on context
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opens new avenues for exploring policy positions and political stances across diverse scenarios,

making such models valuable tools for gaining deeper insights into political dynamics and

decision-making processes.
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A Appendix. Supplementary Tables and Figures

Table A1: List of Questions to Synthetic Politicians

Variable Question Options

CHINAF
[PLACEHOLDER] thinks
that

� A. China is friendly toward Russia

� B. China is neutral toward Russia

� C. China is hostile toward Russia

COALITION
[PLACEHOLDER] would
prefer Russia to form a
coalition with

� A. China

� B. European Union

� C. US

DANOIL

[PLACEHOLDER] thinks
that a decrease in the
price of oil in Russia rep-
resents

� A. The absence of danger

� B. Moderate danger

� C. The utmost danger

EUROPHIL

Which of these statements
is closer to [PLACE-
HOLDER]’s point of
view?

� A. Russia should follow the path of developed countries
and assimilate the experience and achievements of Western
civilization.

� B. Taking into account the history and geographic position
of Russia at the crossroads of Europe and Asia, it should
follow a unique Russian path.

FPNATINT
[PLACEHOLDER] thinks
that

� A. The national interests of Russia for the most part should
be limited to its current territory.

� B. The national interests of Russia for the most part should
extend beyond its current territory.

To be continued



Table A1: (continued)

Variable Question Options

FPNATINT1
[PLACEHOLDER] thinks
that

� A. Russia has vital interests in the ’Near Abroad’ but not
beyond that.

� B. Russia has vital interests in the ’Near Abroad’ and East-
ern Europe, but not beyond that.

� C. Russia has vital interests in parts of the world not only in
the ’Near Abroad’ and Eastern Europe, but also in various
parts of the world.

LFINTEG

In [PLACEHOLDER]’s
opinion, defending the
territorial integrity of the
Russian Federation makes
the use of the Russian
military permissible?

� A. Yes

� B. No

FUTURE

In [PLACEHOLDER]’s
opinion, how will Vladimir
Putin distribute power
when he leaves the presi-
dency?

� A. Transfer all power to a trusted successor or like-minded
associates

� B. Transfer power to at least one like-minded associate, but
keep some power for himself well into the future

� C. Keep all power in his own hands despite leaving the
presidency

� C. Let voters decide in fully free and fair elections, even if
this allows a true opposition figure to win

MILLEV
[PLACEHOLDER] thinks
that Russia should. . .

� A. Increase its military expenditures

� B. Decrease its military expenditures

� C. Keep its military expenditures at the same level

MILROLE
[PLACEHOLDER] thinks
that

� A. Military force ultimately decides everything in interna-
tional relations.

� B. The economic, and not military, potential of a country
determines the place and role of a country in the world
today.

To be continued
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Table A1: (continued)

Variable Question Options

NATOEXP

[PLACEHOLDER] thinks
that further expansion of
NATO to countries in the
Near Abroad represents
the greatest threat to the
security of Russia

� A. The absence of danger

� B. Moderate danger

� C. The utmost danger

NATOF
[PLACEHOLDER] thinks
that

� A. NATO is friendly toward Russia

� B. NATO is neutral toward Russia

� C. NATO is hostile toward Russia

RUSNUK
[PLACEHOLDER] thinks
that

� A. Russia and Ukraine should be completely independent
countries.

� B. Russia and Ukraine should be partially independent
countries.

� C. Russia and Ukraine should be united into a single coun-
try.

SECDOMES

[PLACEHOLDER] thinks
that the inability of Rus-
sia to resolve its internal
problems represents the
greatest threat to the se-
curity of Russia

� A. The absence of danger

� B. Moderate danger

� C. The utmost danger

SECUSPOWER

[PLACEHOLDER] thinks
that the growth of US mil-
itary power compared to
that of Russia represents
the greatest threat to the
security of Russia

� A. The absence of danger

� B. Moderate danger

� C. The utmost danger

SEMODEL

Which country does
[PLACEHOLDER] think
can serve as a model of
political and economic
development for Russia?

� A. Scandinavia

� B. Germany

� C. China

� D. US

To be continued
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Table A1: (continued)

Variable Question Options

UKROPTIONS
[PLACEHOLDER] would
prefer

� A. eastern Ukraine to become part of the Russian Federa-
tion

� B. eastern Ukraine to become an independent government

� C. eastern Ukraine to remain part of Ukraine

USF
[PLACEHOLDER] thinks
that

� A. US is friendly toward Russia

� B. US is neutral toward Russia

� C. US is hostile toward Russia
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B Appendix. Supplementary Analysis: Survey Data

Generation

Guided by the specified criteria, this research presents three distinct code implementations:

a) single-factor data generation for closed-ended questions, which entails the creation of a set

of prompts and a full set of permuted multiple-choice responses for each question; b) multi-

factor data generation for closed-ended questions utilizing multi-factor crosstabs to build

prompts for subgroups based on multiple socio-demographic factors; and c) data generation

for open-ended questions that resembles single-factor data generation but is adapted to the

format of open-ended questions.

Approach I: Single-factor Generation of Data for Closed-Ended Questions

In this single-factor approach, the focus lies in generating responses from synthetic person-

alities without accounting for various socio-demographic characteristics. Therefore, in this

research, the approach is employed for data generation concerning “Vladimir Putin” and

“Alexei Navalny”.

The construct prompt is as follows:

Placeholder︸ ︷︷ ︸
Person={V ladimirPutin,AlexeiNavalny}

thinks that

A.Option1;B.Option2;C.Option3.︸ ︷︷ ︸
Permutations:{ABC},{BAC},{CAB},{ACB},{ACB},{BCA},{CBA}

.

The Python script that implements automated generation of responses using the GPT-

3 model is available on GitHub. For simplification purposes, one needs to fill out only

the spreadsheet (see Figure B1) and run the Python code. The spreadsheet contains the

following fields or variables: Index (question’s index 1...N), Variable name (can be taken

from external data set in case if there is a need to make comparisons between generated

responses and survey outputs), Permutation (“Yes” if permuted options for specific question

are allowed and “No” otherwise); Questions (a question can contain a placeholder “[Person]”

or “[YEAR]” to be filled with specific name or concept); Options1...10 (separate fields for
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Figure B1: Preparation of Data for Response Generation Using GPT-3’s Davinci Model

Notes: Example of data preparation using an Excel spreadsheet to generate responses.

multiple choice options). The user does not need to number or alphabetize options because

the code will automatically insert the appropriate letters during the processing stage.

For each permutation the algorithm extracts the option with the highest probability and

calculates option-wise statistics, such as the mean and standard deviation. The rationale

behind focusing solely on the most probable choices is to ensure that the resulting tokens

are sensible, given that the options with lower probabilities could be nonsensical. Moreover,

certain options may never be chosen by the model and thus are disregarded in the output.

A single API request or GPT-3 query provides normalized probabilities for generated

responses for each permutation, which sum up to one. However, option-wise aggregate es-

timates for all permutations do not sum up to one, and thus normalization of the resulting

quantities of interest is necessary to ensure consistency. Presently, the script does not im-

plement such normalization.

Although computing permutations of questions can be computationally expensive, an

increase in the number of permutations can increase confidence in the results and help assess

the amount of relevant information in the large language model. Conversely, when the

number of options and permutations is limited to two, we may have less confidence in the
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generated results.

Approach II: Multi-Factor Data Generation for Closed-Ended Questions

This approach primarily focuses on data generation utilizing the multifactor crosstabs. The

goal is to simulate survey data based on various socio-demographic factors. By constructing a

crosstab for socio-demographic groups of interest and utilizing information on both the socio-

demographic groups and their corresponding responses to a specific question, complete survey

data can be generated using the GPT-3 (text-davinci-003 ) model. Proposed data generation

approach enables the exploration of socio-demographic patterns and their relation to the

generated responses, shedding light on the attitudes and opinions within different subgroups

of the Russian elites. This study specifically aims to investigate whether socio-demographic

subgroups divided by age, gender and elite status lean towards specific policy.

Considering the significant costs and time requirements associated with sampling the

question component of the prompts, the decision was made to utilize the original wording

of the prompts and solely rely on the permutation algorithm as a means of introducing

variation. This approach was chosen to strike a balance between computational efficiency

and maintaining a sufficient level of diversity in the generated responses.

For validation group-level section of analysis the following template has been used:

Placeholder︸ ︷︷ ︸
Y ear=2020

Placeholder︸ ︷︷ ︸
Age={young,old}

member of Russian elite who belongs to Placeholder︸ ︷︷ ︸
Elites={state,nonstate}

elites

and Placeholder︸ ︷︷ ︸
Gender={male,female}

thinks that A.Option1;B.Option2;C.Option3.︸ ︷︷ ︸
Permutations:{ABC},{BAC},{CAB},{ACB},{ACB},{BCA},{CBA}

.

The script is available on GitHub. The algorithm fills in the placeholders with the

corresponding values retrieved from the crosstab object. Figure (a) demonstrates the output

data for a single query and question permutation, presenting the generated data resulting

from the application of the GPT-3 model. Figure (b) displays the cross-tabulation, which

includes the means and standard deviations of token probabilities that have been generated

by GPT-3.

This study aimed to demonstrate the application of the GPT-3 Davinci model in gener-
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Figure B2: Data Generation: Study 2

(a) (b)

(a) demonstrates the output data for a single query-permutation; (b) displays the cross-tabulation, which
includes the means and standard deviations of token probabilities that have been generated by GPT-3.
Question: “In {Year} {Age} member of Russian elite who belongs to {Elite Type} and {Gender} thinks
that”. Options: “Russia has vital interests not only in the ‘Near Abroad’ and Eastern Europe, but also in
various parts of the world”,“Russia has vitally important interests in the ‘Near Abroad,’ but not beyond
that.”, “Russia has vitally important interests in the whole world.”

ating multiple-choice responses from various subgroups of the Russian elites. In this study,

the group-level data is generated based on socio-demographic factors such as age, gender,

and elite type. This approach is adopted due to the high costs associated with generating

data at the individual level. It is important to note that the generated group-level data typ-

ically exhibits low variation in token probabilities across different groups. This essentially

suggests that the model lacks sufficient data to make distinctions between these groups.

To assess the accuracy of the generated group-level data, the token probabilities for the

winning option are compared with the 2020 group-level percentages of the winning option.

The findings, as depicted in Figure B1, reveal a wide variation in correlation coefficients and

differences between the generated estimates and the baseline figures.2 In terms of correlation

analysis, the question on whether Russia should follow the path of developed countries

(EUROPHIL), the question on the country-model of socio-economic development for Russia

(SEMODEL), and whether the use of the Russian military permissible in defense of the

territorial integrity (LFINTEG). Other questions can be found in Table A1 of the Appendix.

2The interpretation for the question labels can be found in Table A1 of the Appendix.
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Table B1: Group-level Validation Study

Option 1 Option 2
Variables ρ δ σδ ρ δ σδ

FPNATINT 0.05 -0.68 0.19 0.75 -0.40 0.12
FPNATINT1 -0.20 -0.90 0.08
MILROLE 0.04 -0.47 0.27
LFINTEG 0.35 -0.89 0.10 0.38 0.11 0.15
SEMODEL 0.45 -0.58 0.36
EUROPHIL 0.65 -0.21 0.15
RUSNUK -0.31 -0.04 0.06
NATOCIS -0.13 0.01 0.07 nan -0.82 0.19
UKROPTIONS 0.30 0.12 0.14
LIKELYPUFUTURE 0.09 -0.72 0.25 0.00 -0.71 0.25

Notes: ρ – Pearson correlation coefficient between the survey and GPT-3 data; δ – prediction error,
(p̂− p); σδ – standard deviation of prediction error, δ.

The explanation for why these specific questions yield better validation results could be

attributed to the fact that these questions were included in the training data.

Approach III: Data Generation for Open-Ended Questions

According to the third approach, the GPT-3 model is fine-tuned using publicly available

data related to Vladimir Putin and Alexei Navalny. The data collection process took place

in June 2022, sourcing information from two websites: www.kremlin.ru, which provided

8,603 transcripts spanning the period from 2000 to 2022, and http://www.navalny.ru, where

2,954 posts from the years 2009 to 2022 were collected.

Due to the substantial size of the dataset and the preference for a low-cost model, the

decision was made to utilize the Babbage model, which contains 1.3 billion parameters and

is 135 times smaller than the Davinci model. Despite its reduced capacity and limited

functionalities, such as basic classification and semantic search, this model still produces

intriguing results.

Due to the limitations of the Babbage model, which lacks the capability to provide letter

choices for multiple-choice questions, a specific strategy had to be employed as an alterna-
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tive approach. As per this strategy, the responses were generated as text fragments, each

consisting of more than 100 tokens, approximately equivalent to 75 words. Additionally,

to incorporate time sensitivity in the responses, each question referred to two distinct time

periods: “before 2014”, representing the period prior to the occupation of Crimea, and “after

2020”, during which the political regime exhibited increased repression and hostility towards

the opposition. By incorporating these temporal references, the study aimed to generate

responses that are contextually relevant and reflective of the changing political landscape

over time.

To associate the text fragment with a multiple-choice question, semantic similarity is

computed between the generated text fragment and each multiple-choice option. This is

accomplished by obtaining embeddings for each generated text and multiple-choice option

using the fine-tuned Babbage model and then calculating the cosine similarity between them.

Cosine similarity is a metric that measures the cosine of the angle between two n-dimensional

embedding vectors projected into multidimensional space, given by cos(θ) = A·B
|A||B| . The

multiple-choice option with the highest similarity to the generated text fragment is selected

as the best matching option.

As described earlier, in order to associate a text fragment with a multiple-choice question,

the process involves calculating the semantic similarity between the generated text fragment

and each available multiple-choice option. This is achieved by obtaining embeddings for both

the generated text and the multiple-choice options using the fine-tuned Babbage model. By

determining the multiple-choice option with the highest similarity to the generated text

fragment, the best matching option can be identified.

The quality of the generated results can be evaluated based on several criteria. First,

the reasonableness of the generated results can be examined to determine whether they are

meaningful and consistent with expectations. Second, a semantic consistency check can be

conducted by comparing the outputs generated by the Davinci and Babbage models using

similarity analysis.
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Table B2: Comparison of Generated Responses to Closed-Ended and Open-Ended Questions

Question Vladimir Putin Alexei Navalny
S Davinci Babbage Babbage S Davinci Babbage Babbage

GE (general) (before) (after) NE (general) (before) (after)

FPNATINT B B B A B B B B
FPNATINT1 C C C C C C C B
MILROLE A B B B B B A B
LFINTEG A A A A A A A B
SEMODEL D B D D D A C C
EUROPHIL B B A A B A B A
RUS N UK A D D D A A A A
NATOCIS D D D D D D A A
UKROPTIONS B A C C B A D D
LIKELYPUFUTURE E B E E C E E C

Accuracy 0.5 0.6 0.5 0.6 0.5 0.4
Cramer’s V 0.68 0.73 0.76 0.75 0.69 0.47

Notes: See Table A1 in Appendix A for an interpretation of the variable names used. S – stands for the
Survey of Russian Elites, GE – government elites, NE – nongovernment elites.

Table B2 presents the generated responses obtained from both models.

The main findings of this study are as follows.

First, the strength of association, as measured by Cramer’s V, between the survey vari-

ables and the columns of the generated data indicates a strong relationship between our

variables.

Second, the accuracy of predictions for “Vladimir Putin” is higher compared to “Alexei

Navalny”. Firstly, the dataset available for Alexei Navalny is smaller, with numerous ques-

tions from the Survey of Russian Elites being irrelevant to the content of his blog. Addi-

tionally, the data for Alexei Navalny has undergone automatic translation, and while Google

Translate is a powerful tool, its output may not always be optimal. Moreover, certain re-

sponses from “Alexei Navalny” after the year 2020 bear resemblance to those of Vladimir

Putin. This similarity might arise due to the Babbage model’s attempt to fill gaps in “Alexei

Navalny’s” data with responses from “Vladimir Putin”. This assumption finds support in

the correlation analysis of t-SNE scores, which indicates a shift in the correlation between the
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responses of the two politicians. The correlation changes from negative before 2012 (−0.32)

to positive after 2020 (0.27). Considering the political developments in Russia since 2020,

including heightened repression and brutality against political opponents by the regime, the

observed positive correlation in responses between the two politicians is rather surprising.

The second finding pertains to the strength of association measured by Cramer’s V between

the survey variables and the columns of generated data, indicating a strong association

between them.

Third, when it comes to the quality of the generated responses, Table B2 indicates

that, despite being fine-tuned, the Babbage model does not significantly improve the results.

Since Davinci model does not require additional fine-tuning it seems to outperform better

the Babbage model.
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